
Tetrahedron
Tetrahedron Letters 45 (2004) 3749–3752

Letters
Evaluation of anion selectivity in protic media by squaramide–
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Abstract—A new series of positively charged squaramide-ammonium compounds 1–6 bind sulfate and hydrogen phosphate in
ethanol–water mixtures by a combination of electrostatic and hydrogen bonding interactions. A sensing ensemble composed of
Cresol Red and an squaramide receptor signals the association events of these anions. Competitive experiments in ethanol–water
mixtures (9:1) reveal a moderate selectivity for sulfate over hydrogen phosphate and suggest that squaramide 4, featuring an
intermediate distance between squaramide subunits, is better suited for complexation of sulfate.
� 2004 Elsevier Ltd. All rights reserved.
There is an increasing interest in the development of
host molecules for sensing anions in protic solvents and/
or in water, the natural solvent for most anions.1

Despite this interest there are only a few selective hosts
for sensing anions in aqueous media due to the high
solvating ability of water.2 This is especially true for
anions of similar charge and shape such as sulfate3 and
hydrogen phosphate,4 two closely related anions. In
water and water–ethanol mixtures these oxyanions are
highly solvated and their effective binding require the
participation of Lewis acid centers5 and/or positively
charged groups such as quaternary nitrogen atoms.6

In our approach to the problem of selective recognition
of anions in protic media, we became interested in
studying the effect on the selectivity of binding when
introducing certain structural variations, including
among these a variable number of hydrogen bonding
interactions, while keeping constant two electropositive
centers as a main force of binding. The final goal of our
work is to unravel the factors that control the selective
recognition of oxyanions in water. In fact, a combina-
tion of electrostatic and hydrogen bonding forces is
responsible of the specificity of sulfate or phosphate
binding proteins.7
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Inspired in the same principle of design we report a new
set of pH-independent squaramido-ammonium recep-
tors 1–6 capable of binding oxyanions in water–ethanol
mixtures.
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Table 1. Association constants (Ka) for the binding of Cresol Red to

squaramides 1–6 in an ethanol–water mixture (9:1) and relative selec-

tivity of sulfate versus hydrogen phosphate determined by competition

assays

Compound Ka (M�1) SO4
2/HPO4

2�

1 2.2 · 104 1.06

2 9.5 · 103 1.04

3 7.0 · 103 1.22

4 7.6 · 103 2.28

5 4.0 · 103 1.13

6 6.0 · 103 1.49
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We also set out a colorimetric ensemble8 for evaluating
the relative selectivity of sulfate (SO4

2�) over hydrogen
phosphate (HPO4

2�). In our measuring ensemble we
took advantage of the complexation-induced displace-
ment of the acid–base equilibrium of Cresol Red, a
common pH indicator. Squaramides 1–6 were obtained
in good yield from commercially available materials.9

All these compounds have two electropositive tetraalkyl
ammonium groups but differ in their hydrogen bonding
abilities and the distances between charges. Thus, the
distance between the two electropositive centers in 1–3 is
shorter when compared to 4 and 5, 6. Also important,
squaramides 1–6 do not absorb below 350 nm in ethanol
and they are soluble in ethanol or water–ethanol mix-
tures.

Cresol Red was selected as signaling agent for assem-
bling a colorimetric sensing device. In solution the color
of this indicator change from yellow to purple by
deprotonation of a phenolic monoanion to give a
dianionic semiquinone with extended conjugation that is
recognized by the squaramide receptors. The UV–vis
spectrum of Cresol Red (4 · 10�5 M) registered in a Tris
(10�2 M, pH¼ 9) buffered solution, at a pH close to the
pK2 of Cresol Red (8.46), still displays the yellow band
of the monoanion at kmax ¼ 428 nm. However the
spectrum of a solution containing Cresol Red and each
one of the squaramides 1–6 exhibit also a band at
kmax ¼ 580 nm, as depicted in Figure 1A. Visually, the
observed color change from yellow to purple is
accounted for by complexation-induced shift of the
acid–base equilibrium in Cresol Red10 due to the pref-
erential complexation of the dianionic over the mono-
ionic form. The stoichiometry and the association
constants between Cresol Red and squaramides 1–6
were evaluated at kmax ¼ 580 nm, by nonlinear curve
fitting assuming a 1:1 equilibrium (Table 1).11 This band,
assigned to the dianionic form of the indicator, gives us
a direct measure of the concentration of Cresol Red in a
complexed state with squaramide receptors.

The colored complex formed by association of Cresol
Red and squaramides 1–6 is reversible and the band at
kmax ¼ 428 nm, corresponding to uncomplexed Cresol
Red, is completely recovered after addition of SO4

2� or
HPO4

2� oxyanions. As a consequence, the displacement
of receptor-bound Cresol Red by these anions is sig-
Figure 1. UV–vis spectra of (A) a solution of Cresol Red (4.2 · 10�5 M) (a) b

(B) Changes in the absorbance produced by increasing the concentration of 6

The traces show the absorbance at 0; 4.1 · 10�5; 9.1 · 10�5; 1.3 · 10�4; 1.7 · 1
naled visually (see Graphical abstract) and this effect
allows the visible spectrophotometric determination of
both anions.

Remarkably, all squaramides studied so far display
lower affinity for Cresol Red than for sulfate or hydro-
gen phosphate as is evidenced by the change in color
when solutions of these two anions are slowly added to a
solution containing an squaramide receptor–Cresol Red
sensing pair. Taking advantage of the above observa-
tions, we studied the relative selectivity of sulfate versus
hydrogen phosphate by preparing different signaling
ensembles composed of Cresol Red and each one of the
squaramide receptors 1–6. The competition that takes
place between Cresol Red and sulfate anion is illustrated
in Scheme 1.

In all cases, the sensing ensemble was prepared by
mixing Cresol Red and compounds 1–6 in a 1:5 molar
ratio in an EtOH–H2O (9:1) solution of Tris buffer
(10�2 M). When the solution containing the ensemble
was titrated with a solution of sulfate or hydrogen
phosphate the color changed visually from purple
(580 nm) to yellow (428 nm). In the UV–vis spectrum the
absorption at 580 nm decreases while the band at 428 nm
increases upon addition of the above anions. Figure 2
shows the decrease of the absorption at 580 nm observed
by addition of both anions.

The relative affinities of sulfate and hydrogen phosphate
were determined by competitive colorimetric titration.
In the present case, the initial slope of a plot obtained by
representing the change in absorbance versus anion
concentration was used to estimate their relative binding
efore and (b) after the addition of compound 6 (9.2· 10�4 M) at 21 �C.
until a final concentration 10 times higher relative to that of Cresol Red.

0�4; 1.3 · 10�4; 2.3 · 10�4; 4.1 · 10�4 M, respectively.



Figure 2. Change in absorbance at 580 nm of an ensemble composed

of Cresol Red and squaramide 4 upon titration with sulfate (s) and

hydrogen phosphate (�).

Scheme 1. Schematic representation of the competitive equilibria between Cresol Red and sulfate for squaramide receptor 2.
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(Table 1). The possible competition of the target anions
with other potentially interfering anions was also
investigated. In a preliminary study, the UV spectra of
the ensemble remains essentially unaltered by addition
of 25 ppm of each one of the following anions as sodium
salts: carbonate, nitrate, nitrite, fluoride, chloride, bro-
mide, iodide.

The above results illustrated a slight selectivity of SO4
2�

over HPO4
2�. In terms of energy a maximum difference

of only 0.4 kcalmol�1 observed for 4 is clearly insuffi-
cient for selectivity purposes. However, it suggests a
route for the synthesis of more selective receptors. In all
these cases, molecular modeling shows that squaramides
1–6 are complexed to sulfate or hydrogen phosphate by
using only two of the four oxygen atoms available for
binding whereas a significant portion of the oxyanion is
still exposed to solvent. If the observed energy gap
reflects a true difference in binding between anions it can
be deduced that the structural pattern of squaramide 4 is
better suited than other structures studied so far. It is
also conceivable that selectivity will improve with
receptors capable of interacting simultaneously with all
oxygen atoms of these isomorphic tetrahedral oxy-
anions.

In summary, we demonstrate the use of competitive
colorimetric titrations, to evaluate rapidly a number of
partial structures designed for binding oxydianions. We
demonstrated that the charged squaramide compounds
alter the acid–base equilibrium of Cresol Red by com-
plexation with the dianionic form of the indicator. We
also studied, for the first time, the use of this indicator in
a sensing device for signaling the presence of sulfate or
hydrogen phosphate. Currently this technique is applied
as a tool to evaluate structural modifications directed to
the synthesis of selective receptors in protic solvents.
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